WhatsHap: Haplotype Assembly for Future-Generation Sequencing Reads

نویسندگان

  • Murray Patterson
  • Tobias Marschall
  • Nadia Pisanti
  • Leo van Iersel
  • Leen Stougie
  • Gunnar W. Klau
  • Alexander Schönhuth
چکیده

The human genome is diploid, that is each of its chromosomes comes in two copies. This requires to phase the single nucleotide polymorphisms (SNPs), that is, to assign them to the two copies, beyond just detecting them. The resulting haplotypes, lists of SNPs belonging to each copy, are crucial for downstream analyses in population genetics. Currently, statistical approaches, which avoid making use of direct read information, constitute the state-of-the-art. Haplotype assembly, which addresses phasing directly from sequencing reads, suffers from the fact that sequencing reads of the current generation are too short to serve the purposes of genome-wide phasing. Future sequencing technologies, however, bear the promise to generate reads of lengths and error rates that allow to bridge all SNP positions in the genome at sufficient amounts of SNPs per read. Existing haplotype assembly approaches, however, profit precisely, in terms of computational complexity, from the limited length of current-generation reads, because their runtime is usually exponential in the number of SNPs per sequencing read. This implies that such approaches will not be able to exploit the benefits of long enough, future-generation reads. Here, we suggest WhatsHap, a novel dynamic programming approach to haplotype assembly. It is the first approach that yields provably optimal solutions to the weighted minimum error correction (wMEC) problem in runtime linear in the number of SNPs per sequencing read, making it suitable for future-generation reads. WhatsHap is a fixed parameter tractable (FPT) approach with coverage as the parameter. We demonstrate that WhatsHap can handle datasets of coverage up to 20x, processing chromosomes on standard workstations in only 1-2 hours. Our simulation study shows that the quality of haplotypes assembled by WhatsHap significantly improves with increasing read length, both in terms of genome coverage as well as in terms of switch errors. The switch error rates we achieve in our simulations are superior to those obtained by state-of-the-art statistical phasers. ? Joint first authorship. ?? Joint last authorship.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing Reads

The human genome is diploid, which requires assigning heterozygous single nucleotide polymorphisms (SNPs) to the two copies of the genome. The resulting haplotypes, lists of SNPs belonging to each copy, are crucial for downstream analyses in population genetics. Currently, statistical approaches, which are oblivious to direct read information, constitute the state-of-the-art. Haplotype assembly...

متن کامل

Selecting Reads for Haplotype Assembly

Haplotype assembly or read-based phasing is the problem of reconstructing both haplotypes of a diploid genome from next-generation sequencing data. This problem is formalized as the Minimum Error Correction (MEC) problem and can be solved using algorithms such as WhatsHap. The runtime of WhatsHap is exponential in the maximum coverage, which is hence controlled in a pre-processing step that sel...

متن کامل

Towards High-performance Haplotype Assembly for Future Sequencing

The problem of Haplotype Assembly is an essential step in human genome analysis. Being the well known MEC model for its solution NP-hard, it is currently addressed by using algorithms that grow exponentially with the length of DNA fragments obtained by the sequencing process. Technological improvements will reduce fragmentation, increase fragment length and make such computational costs worst. ...

متن کامل

WhatsHap: fast and accurate read-based phasing

Correspondence: [email protected] Center for Bioinformatics, Saarland University, Campus E2.1, 66123, Saarbrücken, Germany Max Planck Institute for Informatics, Saarbrücken, Germany Full list of author information is available at the end of the article †Equal contributor Abstract Read-based phasing allows to reconstruct the haplotype structure of a sample purely from sequencing reads. ...

متن کامل

Third-generation sequencing and the future of genomics

Third-generation long-range DNA sequencing and mapping technologies are creating a renaissance in high-quality genome sequencing. Unlike second-generation sequencing, which produces short reads a few hundred base-pairs long, third-generation single-molecule technologies generate over 10,000 bp reads or map over 100,000 bp molecules. We analyze how increased read lengths can be used to address l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014